
Abstract. The nonlocal resonance model developed
previously for the description of low-energy electron
collisions with hydrogen halides is generalized to include
the dependence of the dipole-modi®ed threshold expo-
nent on the internuclear distance. An e�cient computa-
tional scheme has been developed to deal with the
resulting nonseparability of the nonlocal complex poten-
tial for the nuclear motion within the Schwinger-Lanczos
approach. The results reveal that the R-dependence of the
threshold exponent has a signi®cant e�ect on the thresh-
old peaks in the vibrational excitation cross sections of
HCl. The shape and intensity of the calculated threshold
peak in the 0! 1 vibrational excitation channel, in
particular, are in much better agreement with experimen-
tal data than previous results. For the electron-HBr and
electron-HI collision systems the e�ects of the R-depen-
dence of the threshold exponent are not signi®cant.
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1 Introduction

Pronounced and unusual threshold structures in the
vibrational excitation (VE) and dissociative attachment
(DA) cross sections of the hydrogen halides HF, HCl,
and HBr were discovered more than 20 years ago [1±3].
The excitation functions of the low vibrational levels
exhibit intense and narrow peaks at threshold [1, 3±6].
Moreover, pronounced Wigner-cusp-like structures have
been found in the energy dependence of the DA cross
section [2, 7]. The explanation of these phenomena has
been a challenge for the theory for some time. A variety
of theoretical methods and models has been developed

and employed, for example, the close-coupling method
[8], the R-matrix method [9±13], the Fano-Feshbach
resonance approach [14±19], or e�ective-range-type
models [20]. The so-called nonlocal resonance model
[12, 14] (the name originates from the fact that the
e�ective potential for the nuclear motion in the reso-
nance state is nonlocal) derived from the Fano-Feshbach
approach has been particularly successful in providing
a uni®ed description of VE and DA processes in the
collision of low-energy electrons with HX (X = F, Cl,
Br, I) [15±19]. Recently the associative detachment cross
section in H + Clÿ collisions has been calculated within
the nonlocal resonance model as well [22].

The nonlocal resonance model is formulated in terms
of a discrete (localized) electronic state and an electronic
scattering continuum. These electronic basis states are
assumed to be diabatic, i.e., slowly varying functions of
the internuclear distance R. Basic quantities in the non-
local resonance model are the energy-dependent decay
width of the resonance

C�E;R� � 2pjVdE�R�j2 �1�
and the associated level-shift function

D�E;R� � 1

2p
P

Z
dE0

C�E0;R�
E ÿ E0

�2�
Here P denotes the principal value of the integral and
VdE�R� is the discrete-continuum coupling matrix ele-
ment.

In the nonlocal resonance model the energy depen-
dence of C is given by Wigner's threshold law, that is

C�E� � Ea �3�
at low energies. The energy dependence of C and the
resulting nonanalyticity of D�E� are explicitly taken into
account. Therefore the interplay of resonance and
threshold e�ects is included in this formulation. This
feature has been found to be essential for the description
of the threshold phenomena in electron collisions with
hydrogen halides (see [21] for a review).

In the absence of long-range electron-molecule scat-
tering potentials, the threshold exponent a in Eq. (3) is
given by
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a � l� 1

2
�4�

where l denotes the lowest partial wave into which the
resonance can decay according to symmetry selection
rules (l � 0 for the 2

P� shape resonances of the
hydrogen halides). As is well known, the long-range
dipole potential modi®es the threshold exponent, leading
to non-half-integral values of a [14, 23]. The value of a
for the hydrogen halides is thus determined by the dipole
moments of these molecules.

Since the dipole moments of the hydrogen halides
depend on the internuclear distance, the threshold ex-
ponent also is a function of the internuclear distance:
a � a�R�. In all calculations performed so far, the
threshold exponent has been approximated by its value
at the equilibrium distance of the target molecule, i.e.,
a � a�R0�. This approximation simpli®es the calcula-
tions. On the other hand, the variation of the dipole
moment with R is signi®cant for the lighter hydrogen
halides, which become very polar for intermediate in-
ternuclear distances [24, 25]. One would expect that the
consideration of the variation of a with R should lead to
an improved description of the threshold e�ects, in
particular for HF and HCl.

In the present work we have determined the threshold
exponent as a function of R for HCl, HBr, and HI. The
computational scheme for the treatment of the nuclear
dynamics in the nonlocal energy-dependent potential of
the resonance state has been extended to allow for a
variable threshold exponent a�R�. It is shown that the
variation of a with R has signi®cant e�ects for low-energy
electron-HCl scattering. The generalized model provides
an improved description of the vibrational excitation
functions of HCl. The e�ects for the less polar molecules
HBr and HI are found to be minor. The electron-HF
collision complex is not considered here, since the dipole
moment of the HF molecule is supercritical for a certain
range of internuclear distances, which requires a special
treatment (see [19] for a recent application of the non-
local theory to the electron-HF system).

2 Theory and computational methods

In the existing applications of the nonlocal resonance model to
electron-HX collisions, the discrete-continuum coupling matrix el-
ement has been taken to be of the form

VdE�R� � f �E�g�R� �5�
The dependence of VdE on energy is thus assumed to be the same for
all internuclear distances, which is, of course, a rather restrictive
assumption.

In the model of Domcke and MuÈ ndel [15], henceforth referred
to as DM, the function f �E� has been represented by the analytic
expression

f �E� � �2p�ÿ1
2A

1
2�E=B�aeÿE=B �6�

Here a is the threshold exponent evaluated with the dipole moment
at the equilibrium distance R0 of the target molecule. The parameter
A determines the overall strength of the discrete-continuum
coupling, and B is a high-energy cut-o� parameter. For the function
g�R�, various forms have been chosen [15, 17, 26]. The unknown
parameters have been determined by ®tting the scattering phaseshift
in the ®xed-nuclei approximation to ab initio calculations [15, 17].

In the present work we replace the DM ansatz (5, 6) by the more
general form

VdE�R� � f �E;R�g�R� �7�

f �E; R� � �2p�ÿ1
2A

1
2�E=B�a�R�eÿEb�R�=B �8�

where a�R� and b�R� can be arbitrary functions. The dependence of
VdE on energy is now an explicit function of the internuclear dis-
tance. The R-dependent threshold exponent a�R� is determined by
the dipole moment function of the target molecule, which is well
known for the hydrogen halides [24, 25]. The function b�R� ac-
counts for a dependence of the high-energy cut-o� parameter on
the internuclear distance. Since the aim of this paper is to reveal the
e�ect of the R-dependence of a, we have put b�R� � 1 in the cal-
culations.

The energy-dependent and nonlocal part of the e�ective po-
tential for the nuclear motion in the resonant state is given by the
following expression [21]:

F �E;R;R0� � D�E;R;R0� ÿ i
2

C�E;R;R0� �9�

where

D�E;R;R0� �
X

n

vn�R�g�R�d�E ÿ En;R;R0�vn�R0�g�R0� �10�

and

C�E;R;R0� �
X

n

vn�R�g�R�c�E ÿ En;R;R0�vn�R0�g�R0� �11�

Here

d�E;R;R0� � A
2p

P

Z1
0

dE0
�E0=B��a�R��a�R0��=2eÿE0�b�R��b�R0 ��=2B

E ÿ E0
�12�

and

c�E;R;R0� � A�E=B��a�R��a�R0��=2eÿE�b�R��b�R0��=2B �13�
where the vn�R� are eigenstates of the target molecule and the En
their energies.

With the DM ansatz (5), the integral kernels d�E;R;R0� and
c�E;R;R0� are independent of R and R0, which simpli®es the cal-
culations considerably. The main complication introduced by the
more general ansatz (7) is the fact that the kernel d�E;R;R0� is not
separable in R and R0; see Eq. (12). We may expect, however, that
for reasonably smooth functions a�R� and b�R� a su�ciently ac-
curate separable approximation exists. This approximation is the
key for an e�cient computational algorithm for the solution of the
scattering problem with the nonlocal potential operator (9).

Here we show that the kernel d�E;R;R0� can be approximated
by the expression

d�E;R;R0� �
XN

k�1
Bk�E;R�Bk�E;R0� �14�

with a very small number N of terms. For the construction of this
separable approximation we use the so-called Bateman expansion
[27], widely used in nuclear physics.

The idea of the Bateman expansion is as follows: for the kernel
V �X ; Y � of any nonlocal operator, a new kernel V1�X ; Y � is de®ned
as

V1�X ; Y � � V �X ; Y � ÿ V �X ; Y1�V �X1; Y �
V �X1; Y1� �15�

where X1 and Y1 are properly chosen points in the range of the
potential V . Since for any X and Y

V1�X ; Y1� � 0 �16�
and

V1�X1; Y � � 0 �17�
the ®rst Bateman approximation, B1�X ; Y �
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V �X ; Y � � B1�X ; Y � � V �X ; Y1�V �X1; Y �
V �X1; Y1� �18�

coincides with the exact nonseparable potential at two lines: X � X1

and Y � Y1. The second Bateman approximation is de®ned simi-
larly as a sum of two terms

V �X ; Y � � B1�X ; Y � � B2�X ; Y � �19�
where

B2�X ; Y � � V1�X ; Y2�V1�X2; Y �
V1�X2; Y2� �20�

which coincides with the original potential at the lines: X � X1,
X � X2, Y � Y1, and Y � Y2. This procedure is repeated until the
required accuracy is obtained. It should be stressed that the resul-
tant approximation is a sum of terms which are separable in the
variables R and R0. The energy dependence, which is crucial for the
proper description of threshold e�ects, is treated exactly.

The Bateman technique requires the speci®cation of the points
X1;X2, etc. As a natural choice of the points X1; Y1 one may set
X1 � Y1 � R0, where R0 is the equilibrium distance of the target
molecule. It appears that the ®rst Bateman approximation, N � 1,
yields results correct to four signi®cant ®gures not only for HI, for
which the threshold exponent changes in the limits 0.468±0.5 for the
R of interest, but also for HBr, which has a stronger dipole moment
and for which the the threshold exponent changes over a broader
range of values: 0.386±0.5. For HCl, with the strongest dipole
moment, two terms were needed to approximate the potential to
three signi®cant digits. The choice of the second Bateman point in
the case of HCl was not crucial; the quality of the approximation
was found to be nearly independent of the choice of X2; Y2.

The Bateman expansion has been implemented into the code for
the solution of the nuclear scattering problem with the Schwinger-
Lanczos method [17, 28]. The amount of numerical work needed
for calculations with R-dependent threshold exponent a�R� is
somewhat higher than that required for constant a. Nevertheless,
the calculations are still very fast and the cross sections can be
determined to any desired accuracy.

3 Results and discussion

For the three molecules considered here, HCl, HBr, and
HI, an analytic formula for the dipole moment function
D�R� has been given by Ogilvie et al. [25]. For a given
dipole moment D, the threshold exponent a can
straightforwardly be calculated via the diagonalization
of a tridiagonal matrix [29]. The resulting functions a�R�
for HCl, HBr, and HI are displayed in Fig. 1. While the
deviations of a from the s-wave value 1/2 are minor for
HI and moderate for HBr, we observe a strong variation
of a with R for HCl.

We have performed calculations for VE and DA cross
sections, using previously developed nonlocal resonance
models [15, 17, 18]. In all three cases the constant
threshold exponent [a�R0� � 0.36, 0.42, 0.48 for HCl,
HBr, HI, respectively] has been replaced by the a�R�
functions of Fig. 1.

The DA cross section obtained for HCl in the v � 0
state is shown in Fig. 2 in comparison with the DM
result. One can see that the e�ect of the variation of a
with R is marginal for the DA cross section. This result is
in agreement with previous ®ndings which indicated that
the shape and magnitude of the DA cross section is
rather insensitive to details of the model [30, 31].

Figure 3 gives an overview of the 0! 1, 0! 2, and
0! 3 integral VE cross sections for HCl. The present
variable-a results (full curves) are compared with the DM

results (dashed curves). While the broad shape-resonance
feature near 2.5 eV collision energy is not much a�ected
by the variation of a with R, the shape and intensity of the
threshold peaks change signi®cantly. For the 0! 1
channel, in particular, the cross section at threshold is
strongly enhanced (by more than a factor of two).

Figure 4 displays the threshold peak in the 0! 1
channel on an enlarged energy scale, in comparison with
(nonnormalized) experimental data of Schafer and Allan
[5]. It is seen that the shape of the calculated threshold
peak is in much better agreement with the experimental
data than the original DM result. As emphasized by the
authors [5], cross sectionmeasurements close to threshold
are extremely di�cult and uncertainities up to a factor of
two are to be expected. The calculation predicts a peak
value of about 20 AÊ 2 for the integral 0! 1 cross section.

For the 0! 2 channel we ®nd a pronounced double-
peak structure in the threshold region (Fig. 3b). Indi-
cations of a multiple-peak structure have indeed been
seen in the measurements of CvejanovicÂ [6]. The splitting
of the threshold peak in the 0! 2 channel is closely
related to oscillatory ®ne structure in the 0! 1 cross
section converging towards the DA threshold [5, 6]. This
®ne structure is not quantitatively reproduced by the
DM as well as by the present model owing to de®ciencies

Fig. 1. Threshold exponent as a function of the internuclear
distance for e+HCl (full curve), e+HBr (long dashes), and e+HI
(short dashes)

Fig. 2. Dissociative attachment cross section in HCl �v � 0�. The
cross section obtained with variable a (full curve) is compared with
the cross section obtained with constant a (dashed curve)

33



of the HClÿ potential energy function at large internu-
clear distances. Improvement of the model to obtain a
better description of the long-range part of the HClÿ
potential function will be the subject of future work.

In Fig. 5 the integral 0! 3 VE cross section obtained
in the present calculation is compared with experimental
data of Schafer and Allan (the latter represent the sum of
forward and backward cross sections). In this channel
(as well as in all higher channels) threshold peaks are
absent. The cross sections are dominated by the broad
shape resonance near 2.5 eV collision energy. It is seen
that the threshold cusp structures in the 0! 3 cross
section are qualitatively reproduced by the calculation.

In the calculations for e�HBr and e�HI the re-
placement of a by a�R� leads to only minor changes of
the cross sections for all channels. Therefore these results
are not shown here. It can be concluded that these col-

lision systems are accurately described by the nonlocal
resonance model with constant threshold exponent.

In summary, we have shown that the variation of the
threshold exponent with the internuclear distance is a
relevant feature for the e�HCl system. Inclusion of the
R-dependence of a leads to a substantial improvement in
the description of the threshold peak in the 0! 1 VE
cross section. It appears that the mechanisms behind the
much discussed threshold peaks in the electron-HX cross
sections are now well understood, not only qualitatively,
but also in the sense of quantitative predictions of cross
sections.
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